Mark schemes

Q1.

Alternative method 1

$$
\begin{gathered}
\frac{1}{3}(\times) \pi(x) 5^{2}(x) 15 \text { or } 125 \pi \text { or }[392.5,392.8] \\
\text { oe }
\end{gathered}
$$

$$
\frac{r}{5}=\frac{15-9}{15} \text { or } r=2
$$

oe

$$
r \text { is radius of small cone }
$$

$\frac{1}{3} \times \pi \times$ their $2^{2} \times(15-9)$
or 8π or [25.12, 25.14]
Dep on 2nd M1
117π

$$
\text { Accept } \pi 117 \text { or } \frac{351 \pi}{3}
$$

Alternative method 2

$$
\begin{gathered}
\frac{1}{3}(\times) \pi(x) 5^{2}(x) 15 \text { or } 125 \pi \text { or }[392.5,392.8] \\
\text { oe }
\end{gathered}
$$

volume sf $=\left(\frac{15-9}{15}\right)^{3}$ or $\frac{8}{25}$ or $\left(\frac{15}{15-9}\right)^{3}$ or $\frac{125}{8}$

Accept $1-\frac{8}{25}$ or $\frac{117}{125}$ or 8π or [25.12, 25.14]

$$
\begin{aligned}
& \text { Dep on } 2 n d \text { M1 } \\
& \text { Accept } 1-\frac{8}{25} \text { or } \frac{117}{125}
\end{aligned}
$$

117π

$$
\text { Accept } \pi 117 \text { or } \frac{351 \pi}{3}
$$

Additional Guidance

Allow [3.14, 3.142] for π for M marks only

Q2.
$\frac{12}{10}(=1.2)$ or $\frac{10}{12}$
oe
May be implied from answer of 600
$500 \times$ their 1.2^{3}
oe

864
Accept [863, 864]

Q3.
(a) (height of cylinder $=$) 14

May be seen in method or on diagram
$\frac{1}{3} \times \pi \times 6^{2} \times$ their $14(=168 \pi)$
oe eg $[527.5,528]$
$\frac{2}{3}$
$\times \pi \times 6^{3}(=144 \pi)$
oe eg [452, 452.16]
$168 \pi+144 \pi$
oe eg $312 \pi-168 \pi=144 \pi$
(b) $1500(\mathrm{~g})$

B1
$(312 \pi \times) 2^{3}(=2496 \pi)$
oe
eg $\frac{1}{3} \times \pi \times 12^{2} \times$ their $28+\frac{2}{3} \times \pi \times 12^{3}$
or [7837.4, 7842.432]

Their $1500 \div$ their 2496π
[0.19, 0.1914]
ft their 1500 and their 28
Accept 0.2 if correct method seen

Q4.
(Linear sf $=$) 1.5
681 or 1021.5 implies B1
B1
454×1.5^{3}

1532 (...)
Accept 1530 or 1500 with working

Alternative

Radius of larger cylinder
$=[5.7,5.71]$
B1
$\pi \times$ radius $^{2} \times 15$
[1531.5, 1532.5]

Q5.
$75 \div 50$ or $\frac{3}{2}$ or 1.5 seen or implied
or $50 \div 75$ or $\frac{2}{3}$ seen or implied
oe

$$
\begin{gathered}
(75 \div 50)^{2} \text { or }\left(\frac{3}{2}\right)^{2} \text { or } 1.5^{2} \text { or } 2.25 \text { or } \frac{9}{4} \\
\text { or }(50 \div 75)^{2} \text { or }\left(\frac{2}{3}\right)^{2} \text { or } \frac{4}{9} \\
\text { oe }
\end{gathered}
$$

6000×2.25 or 13500
or 80×6000
oe

```
or 80\div10000
or their 13500\div10000\times80
or }80\times6000\div1000
or 6000\div10000 < 2.25
oe
Dependent on previous M1
```

108
Digits 108 seen M1M1M1M1A0

Additional Guidance

$6000 \times \frac{3}{2} \times 80$

720000 implies $\frac{3}{2}$ and 6000×80 from $\left(6000 \times \frac{3}{2} \times 80\right)$

9000 implies $\frac{3}{2}$
Ignore assumptions about the shape

Q6.
$15 \div 12$ or 1.25
or $12 \div 15$ or 0.8
oe
(their 1.25) ${ }^{3}$
or $\frac{125}{64}$
or 1.95(3125)
or (their 0.8$)^{3}$
or $\frac{64}{125}$
or 0.512
oe
2734.375 or 2734 .(...) or 2730

SC1 for 1750 or 2187.5 or 2188 with no working

Additional Guidance

Treats as a particular shape eg cylinder
$r^{2} \times \pi \times 12=1400 \longrightarrow r=6.0939 \ldots$
$r \times 1.25$
(1.25 seen)
$=6.0939 \ldots \times 1.25$
$=7.617$
$12 \times 1.25=15$
$7.617^{2} \times \pi \times 15$
(1.253 implied)
2734.375 or 2734 .(...) or 2730

